
Latest Java Multi threading Interview Questions 2023

Description

This is going to be a comprehensive post on multi threading. In this post you will see all the questions
from the very basic to the most advanced ones. You go over the question sequentially so that you get
the basic idea of multi threading, even if you are an absolute beginner. If you are already aware of
multithreading then you can go by any sequence.

What is a Thread in Java
Thread is the smallest unit of execution in a process. Process consists of multiple threads running as
part of it. A process has a state associated with it and the state is shared with all the threads. This is
also called as a global shared state which is shared among all the threads. In addition to this, the
threads have their own private state. Threads of a process can share the resources allocated to that
particular process, including memory address space.

What are the benefits of Threads
Usage of Threads yield higher throughput (amount of work done per unit of time).
Allows to write effective programs that utilize maximum CPU time.
Increase use of CPU resources and reduce costs of maintenance.
Efficient Utilization of resources.
Thread creation is considered light weight as compared to spawning a new process.
Less resource-intensive than executing multiple processes at the same time.

What are the problems or issues of using
Threads

Higher cost of code maintenance, a new programmer or and existing programmer will find it
difficult to go over the code flow.
Increased system resource utilization, Each new thread creation consumes additional
memory, CPU cycles for book-keeping and waste of time in context switches.
Very difficult to fix bugs, sometimes it is very difficult to fix bugs as the reason may be due to
multiple thread usage.
Application or program slowness, Acquiring and releasing locks may increase the execution
time. There should be proper coordination amongst threads.

COMPANY NAME
Address | Phone | Link | Email

default watermark

Page 1
Footer Tagline

What are the different types of threads
User and Daemon are two types of thread used in Java by using a Thread Class. Â

What is the difference between the User thread
and the Daemon thread

User Thread Daemon Thread
JVM waits for user threads to finish their
tasks before termination.Â

JVM does not wait for daemon threads to
finish their tasks before termination.

User threads are created by the users for
executing the task concurrently.

Daemon threads are created by the JVM.

User threads are referred to as high priority
threads

Daemon threads are referred to as low
priority threads

User threads are normally application
threads which run in the foreground.

Daemon threads are normally perform
background tasks like garbage collection etc.

Can we create daemon threads
We can create daemon threads by calling t1.setDaemon(true) , where t1 is a user thread. isDaemon()
Â method is used to check whether the current thread is daemon thread or not. If the thread is a
daemon, it will return true otherwise it returns false. Â

Difference between Program vs Process vs
Thread
Program – A program is a set of instructions and associated data that resides on the disk and is
loaded by the operating system to perform some task. The operating system’s kernel is first asked
to create a new process, which is an environment in which a program executes.
Example – Microsoft word is a program that contains a set of instructions written to execute the
program to save or read the contents present on disk

Process – A Process is defined as a program in execution. In other words, It is an execution instance
of the program. Processes don’t share any resources amongst themselves
Example – When you double click on the Microsoft word, the process is started. If you open multiple
word files then you can consider it as multiple process.

Thread– Thread is the smallest unit of execution in a process. Process consists of multiple threads

COMPANY NAME
Address | Phone | Link | Email

default watermark

Page 2
Footer Tagline

running as part of it. A process has a state associated with it and the state is shared with all the
threads. This is also called as a global shared state which is shared among all the threads. In addition
to this, the threads have their own private state. Threads of a process can share the resources
allocated to that particular process, including memory address space.

Difference between Process and Thread

Thread Process
Thread is the smallest executable unit of a
process

Process is an executable instance of a
program.

Thread is easier to create, lightweight, and
have less overhead.

Processes are difficult to create,
heavyweight, and have more overhead.

Multiple threads utilize the same memory
space of the process which it belongs to.

Process has its own memory space.

Processes with multiple threads use fewer
resources.

Processes without threads use more
resources.

Inter thread communication is fast as they
share memory or resources.

Inter process communication is slow as
they have separate memory or resources.

Context switching between threads is
inexpensive.

Context switching between process is
expensive.

There is a need for synchronization in threads
to avoid unexpected scenarios or problems.

There is no need for synchronization in
each process.

What are the two ways of implementing thread
in Java
There are basically two ways of implementing threads in Java.

By Extending a Thread class

class HelloMultithreading extends Thread
{
 public void run()
 {
 System.out.println("Hello My thread is in running state.");
 }
 public static void main(String args[])
 {
 HelloMultithreading hello=new HelloMultithreading();
 hello.start();
 }
}

COMPANY NAME
Address | Phone | Link | Email

default watermark

Page 3
Footer Tagline

Output :- Hello My thread is in running state.

By Implementing Runnable interface.

class HelloMultithreading implements Runnable
{
 public void run()
 {
 System.out.println("Hello My thread is in running state.");
 }
 public static void main(String args[])
 {
 HelloMultithreading object=new HelloMultithreading();
 Thread helloThread =new Thread(object);
 helloThread.start();
 }
}

Output :- Hello My thread is in running state.

Is it possible to start a thread twice
No, It is not possible to start a thread more than once. If we try to start the thread more than once, it
throws IllegalThreadStateException runtime exception.

Can we call the run() method instead of start()
Yes it is possible to call run() method, but there is not be any context-switching between the threads.
When we call the start() method, it internally calls the run() method, which creates a new stack for a
thread while directly calling the run() will not create a new stack.

What is the difference between Thread class
and Runnable interface for creating a Thread

Once you extend the Thread class, you cannot extend any other class because Java does not
support multiple inheritance.
While implementing the Runnable interface, we can extend other class if required.
When you extend the thread class, each thread will create a unique object and associates with it.
While implementing the Runnable interface, multiple threads will share the same object.
Thread class provides multiple methods like isAlive, getPriority etc, but Runnable interface
provides only run() method.

COMPANY NAME
Address | Phone | Link | Email

default watermark

Page 4
Footer Tagline

Difference between Synchronous and
Asynchronous

Synchronous Asynchronous
In Synchronous execution, when caller
invokes a method, unless the control
returns back from the method, next line of
code is not executed.

In Asynchronous execution, when a caller
invokes a method, the caller will not wait for
the method response. It will execute the rest
of the program.

Synchronous execution blocks at each
method call before proceeding to the next
line of code.

Asynchronous execution refers to execution
that does not block when invoking methods.

Already supported in Java.
Java has become more robust starting with
Java 8 when it comes tot Asynchronous
programming.

Whatâ€™s the difference between class lock
and object lock
Class level lock – Class level lock is used when we want to prevent multiple threads to enter into the
synchronized block in any of all available runtime instances. Class level lock is used to make static
data thread safe. There is always one class level lock even though multiple objects of the class exist.

public class ClassLevelLock
{
 public void classLevelLockMethod()
 {
 synchronized (ClassLevelLock.class)
 {
 //code here
 }
 }
}

Object level lock – Object level lock is used when we want only one thread to access the non-static
method or non-static block. Every object of the class can have their own lock.

public class ObjectLevelLock
{
 public void objectLevelLockMethod()

COMPANY NAME
Address | Phone | Link | Email

default watermark

Page 5
Footer Tagline

 {
 synchronized (this)
 {
 //code here
 }
 }
}

What is Thread safety in multithreading
If multiple threads consume the code without causing race condition or state corruption.

What is the use of Thread sleep() method in
Java
sleep() method is used to block a thread for a defined time i.e. It pauses the execution of the thread
for a specific time.

Difference between wait() and sleep() methods
in Java
wait()

wait() method is defined in Object class.
wait() is a non static method which causes the current thread to wait and sleep until another
threads call the notify() or notifyAll() method for the object’s monitor (lock).
It releases the monitor for the object and it is placed in the wait queue.
wait() method is used for inter-thread communication.
wait() method should always be called from the synchronized method or block.
wait() method releases the lock.

sleep()

sleep() method is defined in Thread class.
sleep() is a static method which stops the execution of the current thread for specific time
duration and gives priority to another thread if available.
This method does not release the lock while waiting.
sleep() method should always be called from the synchronized block or method,
When the waiting time completed then again previous thread changes its state from waiting to
runnable and comes in running state, and the whole process works so on till the execution
doesn’t complete.
sleep() method doesn’t release the lock.

COMPANY NAME
Address | Phone | Link | Email

default watermark

Page 6
Footer Tagline

Difference between wait() and notify() in Java
wait() – When thread executes the wait() method, it releases the monitor for the object and it is placed
in the wait queue. The thread must hold the monitor of the object on which it will call wait. Otherwise an
IllegalMonitor exception is raised.

notify() – notify() can only be called by the thread which owns the monitor for the object on
which notify() is being called else an illegal monitor exception is thrown. The notify method, will awaken
one of the threads in the associated wait queue, i.e., waiting on the thread’s monitor. However, this
thread will not be scheduled for execution immediately and will compete with other active threads that
are trying to synchronize on the same object. The thread which executed notify will also need to give
up the object’s monitor, before any one of the competing threads can acquire the monitor and proceed
forward.

notifyAll() – This method is the same as the notify() one except that it wakes up all the threads that
are waiting on the object’s monitor.

Difference between notify() and notifyAll()
notify() method is used to wake up only a single thread instead of multiple threads which are waiting
on the objects monitor.

notifyAll() method wakes up all the threads and allows them to compete for the objects monitor
instead of a single thread.

What is Thread pool
A thread pool is a collection of threads which are waiting for the task to be allocated. When a job is
assigned to a thread in the thread pool, the moment it completes the execution, the threads are put
back into the thread pool. The thread pool consists of fixed number of threads.
java.util.concurrent.Executors class is used to create thread pools.

What are the different types of Thread Pools
There are 4 different types of Thread pools

newFixedThreadPool – newFixedThreadPool has a fixed number of threads. Once a thread
completes its task, it can be reused to perform another task from the queue.
newSingleThreadExecutor – newSingleThreadExecutor uses a single worker thread to take
tasks off the queue and execute them. If the threads dies for any reason, the executor will
replace with the new one.
newCachedThreadPool – newCachedThreadPool will create new threads whenever required

COMPANY NAME
Address | Phone | Link | Email

default watermark

Page 7
Footer Tagline

and uses older ones when they become available. If the thread is idle for a configurable amount
of time then it will get terminated. The newCachedThreadPool is a good choice for short lived
asynchronous tasks.
newScheduledThreadPool – newScheduledThreadPool is used to execute task periodically or
after a delayed time.

What is Thread.join() in Java multi threading
join() method is used to achieve inter-thread communication. join() method is used to pause the
execution of current thread for the some other threads to finish their task. Lets say there are two
threads t1 and t2, you can make t1 to hold the execution for some time so that t2 can finish its task.
Once t2 finishes its task, t1 resumes its execution. In order for this to happen, you should call join()
method on t2 within t1. There are 3 forms of join() method available in Thread class.

Different join method Description
public final void join() throws
InterruptedException

Currently executing thread waits for a thread to
finish itâ€™s task on which it is called

public final void join(long millis) throws
InterruptedException

Currently executing thread milliseconds for a
thread to finish itâ€™s task on which it is called.

public final void join(long millis, int
nanos) throws InterruptedException

Currently executing thread waits milliseconds
plus nanoseconds for a thread to finish itâ€™s
task on which it is called.

What is use of java.util.concurrent package
java.util.concurrent package provides several classes that can be used for solving concurrency
problems. It provides thread safe data structures such asÂ ConcurrentHashMap.

What is a Deadlock in multithreading
Deadlock is a condition when two or more threads fail to move forward with their task because, the
resource required by the first thread is held by the second, and the resource required by the second
thread is held by the first.

COMPANY NAME
Address | Phone | Link | Email

default watermark

Page 8
Footer Tagline

What is Volatile keyword in Java
A volatile keyword is used along with a variable so that the changes made to the value are visible to all
the threads as they read the value from the main memory rather than CPU cache. In short volatile
keyword is used to maintain thread safety.

Whenever a thread works with a counter variable, it may keep a copy of the counter variable in the
CPU cache and manipulate it rather than writing to the main memory. If a variables is marked as
volatile, all the threads reads the value directly from main memory rather than CPU cache, so that
every thread gets the updated value of the variable instead of stale data from CPU cache.

If a variable is declared volatile then whenever a thread writes or reads to the volatile variable, the read
and write always happen in the main memory. All the variables that are visible to the writing thread also
gets written-out to the main memory alongside the volatile variable. Similarly, all the variables visible to
the reading thread alongside the volatile variable will have the latest values visible to the reading
thread.

How to threads communicate with each other
or How is inter thread communication achieved.
The process of communication between synchronized threads is called as inter thread communication.
wait(), notify(), and notifyAll() methods are used for inter thread communication.

COMPANY NAME
Address | Phone | Link | Email

default watermark

Page 9
Footer Tagline

What is Synchronized keyword in Java
multithreading.
Synchronized keyword is used to achieve thread synchronization in Java. Synchronized keyword is
used to restrict access to critical sections one thread at a time. Synchronized keyword can be used
along with method names or it can itself be a construct of its own. Synchronization avoids thread
interference and memory consistency errors. Synchronization makes sure that only one thread tries to
access a shared resource.

public synchronized void methodName() {
 //code here
}

synchronized (flag) {
 //you code here
}

Every object in Java has an entity associated called a “monitor lock”. Once the thread gets access to
the monitor of the object, it can invoke the methods marked as synchronized. During the locked period,
no other thread will be allowed to invoke methods on the object marked as synchronized. When the
first thread release the monitor or exists the synchronized method then only other threads will be
allowed to access it. For static methods, the monitor will be the class object, which is distinct from the
monitor of each instance of the same class. One thing to note is monitor is released when any
uncaught exception occurs in synchronized method.

Important thing to note is overuse of synchronized keyword might reduce the throughput.

Difference between Synchronized method and
synchronized block? which one to use when?
Synchronized method

public synchronized void methodName() {
 //code here
}

Synchronized methods are methods where the thread acquires the lock on the object before entering
into it, and exists the method when method execution is complete. The lock can get released when any
exception occurs. No other thread can enter into the method, unless the current thread finish the

COMPANY NAME
Address | Phone | Link | Email

default watermark

Page 10
Footer Tagline

execution or release the lock.

Synchronized block

synchronized (flag) {
 //you code here
}

Synchronized block is the section of code which are enclosed with parenthesis along with
synchronized keyword as seen in the above example. Similar to synchronized methods, the thread
acquires the lock on the object between parenthesis after the synchronized keyword, and releases the
lock once they leave.

Synchronized block can be used over Synchronized methods, if you want other parts of the program
accessible to other threads. Synchronized blocks boost performance because it locks only a certain
portion of the method rather than entire method,

What is Concurrency
A system which executes several programs in the overlapping time intervals is called as concurrent
system or concurrency. In concurrency, the execution of two or more programs does not happen
simultaneously. The programs do make progress in their execution but at a given point in time a
programs suspends and other carries on with the execution. The main goal is to minimize latency and
maximize throughput.

Operating system running on a single core machine is concurrent in nature. It processes one task at a
given point of time. But as you do multiple things. But all the tasks managed by the operating system
appear to make progress because of Operating systems concurrent nature. Each task gets a slice of
CPU time to execute and move ahead.

Example – If you can think of a juggler from circus, he would handle several balls at the same time.
But at a specific time he can have only one ball in his hand. Each ball gets a time slice.

Difference between Concurrency and
Parallelism

Concurrency Parallelism
Concurrency is when several programs run in
the overlapping time intervals. Operating
system running on a single core machine is
concurrent in nature. It processes one task at
a given point of time.

Parallelism is running multiple programs at
the same time. Operating system running
on multicore processors can execute
multiple programs independently and at
the same time.

Concurrent system need not be parallel. Parallel is in fact concurrent.

COMPANY NAME
Address | Phone | Link | Email

default watermark

Page 11
Footer Tagline

Concurrency Parallelism
Concurrency is dealing with lot of tasks at
once.

Parallelism is doing lot of tasks at once.

Example – Customers waiting in two queues
in front of a single coffee machine, single
customer being addressed alternatively from
both queues one by one.

Example – Serving each customer queue
with a dedicated coffee machine.

System can be both concurrent and parallel. E.g. multitasking operating system running on multicore
machine.

Difference between I/O bound and CPU Bound
Programs require one of the below four resources in order to execute. Depending upon which resource
is required heavily they are categorized into I/O bound vs CPU bound.

Networking Resources
Memory
CPU Time
Disk Storage

I/O Bound –

CPU bound – Programs that are CPU intensive and require high CPU utilization are called CPU bound
programs. Tasks such as image processing, data manipulation, matrix multiplication are CPU bound.
More CPU mean more efficient and faster execution.

I/O bound – I/O bound programs spend most of their time reading or writing to main memory or
network interfaces. I/O bound programs have low CPU utilization as compared to CPU bound
programs.

What is Critical Section
When more than one thread of the application is trying to execute same piece of code concurrently is
called as Critical section. It has a risk of exposing any shared data or resources used by the application.

What is Race Condition
Race condition occurs when threads try to access program variables or shared resources that might be
accessed or evaluated by the other threads at the same time which causes application data to be
inconsistent. Race condition takes place when threads run through the critical section without proper
thread synchronization.

COMPANY NAME
Address | Phone | Link | Email

default watermark

Page 12
Footer Tagline

What is Liveness in multithreading
The ability of an application or a program to execute the task in timely manner is called liveness. This
is exactly opposite of deadlock.

What is Live-Lock in multithreading
Live-Lock occurs when two threads continuously react in response to the action by other thread action,
but those two threads are still not making progress in their task. The best example is to think of two
person John and Doe trying to cross each other in a hallway. John moves to the left to let Doe pass,
and and Doe moves to the right to let John pass. Both are blocking each other. John see he’s blocking
Doe again and moves to his right and Doe moves to his left seeing he’s blocking John. They never
cross each other hence blocking each other.

What is Starvation in multithreading
Starvation in multithreading is when an application thread does not get CPU time or access to shared
resource. Other threads (greedy ðŸ˜) continuously access shared resource not letting the starved
thread make any kind of progress.

What is Reentrant Lock
Reentrant lock is a class which implements the Lock interface. When any object of the class is locked
twice in succession, then it would result in deadlock. The same thread gets blocked on itself. Re-
entrant locks allow for re-locking or re-entering of a synchronization lock.

What is Mutex
Mutex also known as mutual exclusion is used to protect shared data by making sure that only one
thread accesses it. Shared data can either be an array, a primitive type or linked list. A mutex allows
only a single thread to access a resource or critical section.

When a thread acquires a mutex, all other threads trying to acquire the same mutex are blocked until
the first thread releases the mutex. Once the first thread releases the mutex, then any one of the
waiting threads is allowed to acquire the mutex and make progress.

What is Semaphore
Semaphore is used to limit access to a collection of resources. To understand Semaphores properly

COMPANY NAME
Address | Phone | Link | Email

default watermark

Page 13
Footer Tagline

we can think of database connections analogy. Consider there are only 20 connections available and
100 threads are requesting for the connection. At a given time only 20 threads are allowed to connect
to the database. The new thread will only be allowed when any of the existing connected threads
finishes its execution. Semaphores can also be used for signaling among threads.

Difference between Mutex and Semaphore

Mutex Semaphore
Mutex implies mutual exclusion
which is enables only single
thread to access shared resource
or critical section at a given time.

Semaphore is used for signaling among threads.
Semaphores can also be used as mutex.

Mutex is owned by thread. There is no concept of ownership in Semaphore.

If a particular thread has locked a
mutex then same thread has to
unlock it.

A semaphore can be acted upon by different threads.

Example – Think of Mutex as a
single runway in an airport,
where only a single jet can land
or take off at a given point in time.

Example – Think of Semaphores as bike rental service
in Goa. A bike rental firm can only rent out N number of
available bikes. If all the available bikes are rented out,
then new customers need to wait till any bikes is
available.

What is context switching
Context switching is basically switching of CPU from one thread or process to another. It allows
multiple processes to share the same CPU. The state of process or thread is stored so that the
execution can be resumed later if required.

What is Thread starvation
Thread starvation is a situation which happens when a thread does not get access to shared resources
and due of this it is not able to proceed further. Thread starvation mostly happens with low priority
threads as they don’t get CPU for its execution because most of the high priority threads occupy the
resources for a long time.

What is Reentrant Lock
Reentrant Lock is similar to the implicit monitor lock accessed when using synchronized blocks or
methods. With the reentrant lock, you are free to lock and unlock it in different methods but not with
different threads. If you attempt to unlock a reentrant lock object by a thread which didn’t lock it initially,
you will get an IllegalMonitorStateException. This behavior is similar to when a thread attempts to

COMPANY NAME
Address | Phone | Link | Email

default watermark

Page 14
Footer Tagline

unlock a thread mutex.

What is Cyclic barrier
Cyclic barrier is a synchronization mechanism present in java.util.concurrent package, which allows
multiple threads to wait for each other at a common point known as barrier before continuing
execution. The threads wait for each other by calling await() method on the CyclicBarrier.

CyclicBarrier has an integer (which is initialized) that denotes the number of threads that need to call
await() method on the barrier. The second argument in CyclicBarrier’s constructor is a Runnable
instance that includes the action to be executed once the last thread arrives.

What is CountDownLatch
CountDownLatch which is part of java.util.concurrent package is used to block a single or multiple
threads while other threads complete their operation. A CountdownLatch is initialized with the number
of threads that are required to wait until other threads complete their operation. Every time a thread
finishes its task, the thread invokes countDown() which decrements the counter by 1. When the count
reaches zero, the threads which were waiting on the await() method are notified and it resumes the
execution.

What is Thread Scheduler
Thread scheduler is a component of JVM that decides which thread to execute if multiple threads are
waiting to get the chance of execution. Based on the thread priority, thread scheduler selects the next
READY thread to execute. Preemptive Scheduling or Time slicing scheduling is used to schedule
threads.

What is Time Slicing
Time Slicing is used to divide the CPU time and allocate them to active threads. Each thread will get a
slice of time to execute. Every thread will get a chance to execute in a round robin manner. Each
thread gets executed in for a fixed time period.

What is Preemptive multitasking
Preemptive multitasking is when the operating systems preempts (prevent) a program to allow another
waiting task to run on the CPU. The operating system scheduler decides which program or thread are
allowed to use the CPU and for how much time. Preemptive multitasking is a core feature of Unix
based systems.

COMPANY NAME
Address | Phone | Link | Email

default watermark

Page 15
Footer Tagline

What is Cooperative multitasking
As the name suggests, cooperative multitasking involves programs to voluntarily give up the control to
the scheduler so that other program can run on the CPU. The program or thread may give up the
control if it becomes idle or logically blocked. Control can also be given up if the allocated time period
has expired.

Difference between preemptive scheduling and
time slicing
In preemptive scheduling, the high priority task executes until it enters into dead or waiting state.
Whereas in time slicing, a task executes for a predefined time slice and the reenters the pool of ready
tasks. Later scheduler decides which task should execute next based on priority.

What is a shutdown hook
Shutdown hook is thread which is used to perform the resource cleanup before the JVM shutdown.
Shutdown hook is a thread which is invoked implicitly. Below code will add introduce a shutdown hook.

public void invokeShutdownHook(Thread hook){}
Runtime r=Runtime.getRuntime();
r.addShutdownHook(new MyThread());

What is Thread priority
Thread priority means that threads with the highest priority will get more preference over threads with
low priority. You can change the priority from low to high, but there is no guarantee that it will get more
preference over low priority threads. The priority of threads ranges from 1 to 10, where 1 being the
lowest priority and 10 being the highest.

What is Executor framework
Executor framework is like a thread management system in your application which helps the
developers with regards to thread house-keeping. The classes in Executor framework are categorized
into two i.e. Task Submission and Task Execution.

COMPANY NAME
Address | Phone | Link | Email

default watermark

Page 16
Footer Tagline

Does each thread have its own stack?
Yes, each thread has its own separate stack area in memory. Every thread is independent of each
other rather than dependent.

What is a BlockingQueue
A blocking queue is a queue which has limited capacity to hold the elements. Producer thread holds
the job of inserting elements into the queue using put() method and Consumer thread holds the job of
consuming elements using take() method. The Producer thread is blockedÂ if there’s no more capacity
to add the new items. Similarly, the queue blocks the consumer if there are no items in the queue.
Also, the queue notifies a blocked enqueuing thread or producer when space becomes available and a
blocked dequeuing thread or consumer when an item becomes available in the queue.

What do you mean by the ThreadLocal variable
in Java
ThreadLocal variable is a type of variable which is read and writen by the same thread. Two threads
cannot see each others ThreadLocal variable. ThreadLocal variable can be declared in the below way.

ThreadLocal<Integer> counter = ThreadLocal.withInitial(() -> 0);

COMPANY NAME
Address | Phone | Link | Email

default watermark

Page 17
Footer Tagline

Category

1. Interview

Date Created
May 29, 2023
Author
kk-ravi144gmail-com

COMPANY NAME
Address | Phone | Link | Email

default watermark

Page 18
Footer Tagline

