COMPANY NAME
Address | Phone | Link | Email

Annotations in Spring Boot Redis

Description

Introduction

In this post | will explain the four most important annotation used when using Redis along with spring
boot. By the end of this post you will get to know the annotations and its usage.

@EnableCaching

@EnableCaching annotation is used above the main class of the spring boot application which tells the
Spring container that the caching feature will be used.

package com springm croservi ces;

i mport org.springfranmework. boot ., SpriingAppl i cati on;
i mport org.springfranmework. boot\. ‘aut'oconfi gure. Spri ngBoot Appl i cati on;
i mport org.springfranework.caehe. annot ati on. Enabl eCachi ng;

@bpr i ngBoot Appl i cati on

@Enabl eCachi ng

public class Petproject Redi sDenpApplication {

public static void main(String[] args) {

Spri ngAppl i cation. run(Petproject Redi sDenmoAppl i cation. cl ass, args);

}
@Cacheable

@Cacheable annotation is used whenever we are performing GET operation or when we are retrieving
the data from the database. We use this method above the method that is used to retrieve data from
the DB. There are some attributes which we can use along with @Cacheable annotation.

In the below example, the returned value is cached in UnicornEntity and id is the unique key that
identifies each entry in the cache.

@Cacheabl e(val ue="Uni cornEntity", key="#id")
public UnicornEntity getUnicorn(long id) {
Opt i onal <Uni cornEntity> unicorn = uni cornRepository.findByld(id);
if(unicorn.isPresent()) {
return unicorn.get();

Page 1
Footer Tagline



COMPANY NAME
Address | Phone | Link | Email

return null;

}

We can also perform caching based on a specific condition like below. If the length of firsthame is less
than 10 then the response will be cached.

@Cacheabl e(val ue="Uni cornEntity", condition="#firstnane.|ength<l0")

@CachePut

@CachePut is a method level annotation which is used on update operation when we want to update
the cache without interfering the method execution. The method will always execute and the results will
be placed in the cache.

There is a small difference between @Cacheable and @CachePut annotation. @Cacheable skips the
method execution and returns whatever is present in the cache, whereas @CachePut runs the method
and puts the results in the cache.

@CachePut (cacheNanmes="Uni cor nEnti ty™, “key="#i d")
public UnicornEntity updateUnicorn(long id, Unicorn unicorn) {
/'l code | ogic

}
@CacheEvict

@CachekEvict is a method level annotation which is used on delete operation when we want to remove
stale or unused data from the cache. There are two forms of @CacheEvict.

Below form evicts all entries rather than one entry based on the key. This will clear all the entries in the
cache UnicornEntity

@CacheEvi ct (val ue="Uni cornEntity", allEntries=true)

Evict an entry by key:

@CacheEvi ct (key="#enpl oyee. enp_nane")

Wrapping up

Page 2
Footer Tagline



COMPANY NAME
Address | Phone | Link | Email

I hope you enjoyed the post and got to learn something out of it. Let me know your views. If you have
any suggestions or doubts feel free to comment and | will be happy to answer. Keep learning 8Y™,

Category

1. Hands on
2. Spring Boot

Date Created
December 29, 2022
Author
kk-ravil44gmail-com

Page 3
Footer Tagline



