
Spring Boot – Implementing Lombok

Description

Whenever we create (POJO’s) plain old Java objects in our application, we subconsciously create
getter, setters, toString() method and sometimes constructors as well. But have you ever thought that
by doing this your class becomes too lengthy if the attributes are more. There is one way where you
can remove all the setter getter methods and just keep the class attributes. Lombok provides
annotation which you can use based on your project requirements. Lets see what all things are
required to setup Lombok in your application before exploring all the annotations.

1. Adding the dependency

You need to add the below maven dependency in your pom.xml. If you want to know more about
Lombok or the latest version, then you can head over to lombok website

<dependencies>
 <dependency>
 <groupId>org.projectlombok</groupId>
 <artifactId>lombok</artifactId>
 <version>1.18.20</version>
 </dependency>
</dependencies>

2. Replacing Getters and Setters using lombok’s @Getter and @Setter

You will have to annotate your Domain objects with @Getter & @Setter annotation. Lombok will
automatically generate the default getter/setter for you.

@Getter
@Setter
public class Employee {
	private String empId;
	private String empName;
	private Address address;
	.
	.
}

In the above code snippet, Annotations are added at the class level. You can also add it on the field
level based on your requirements. The generated getter/setter method will be public unless you
explicitly specify an AccessLevel, as shown in the example below.

COMPANY NAME
Address | Phone | Link | Email

default watermark

Page 1
Footer Tagline

https://projectlombok.org/changelog

Legal access levels areÂ PUBLIC,Â PROTECTED,Â PACKAGE, andÂ PRIVATE.

public class Employee {
	@Getter
	@Setter
	private String empId;
	@Setter(AccessLevel.PROTECTED)
	private String empName;
	private Address address;
	.
	.
}

If you want to know more in-depth about the two annotations, then head over to this link

3. @ToString andÂ @EqualsAndHashCode

@ToString and @EqualsAndHashCode will be used to generate the toString, equals and hashcode
methods. You can add these annotation above your class.

4. Adding Constructors using @NoArgsConstructor, @RequiredArgsConstructor,
@AllArgsConstructor

@NoArgsConstructor annotation will generate a constructor which will not any parameters. If this is
not possible (because of final fields), a compiler error will result instead, unless
@NoArgsConstructor(force = true) is used, then all final fields are initialized with 0 / false /
null

@RequiredArgsConstructor generates a constructor with 1 parameter for each field that requires
special handling. All non-initialized final fields get a parameter, as well as any fields that are marked
as @NonNull that aren’t initialized where they are declared. For those fields marked with @NonNull,
an explicit null check is also generated. The constructor will throw a NullPointerException if any
of the parameters intended for the fields marked with @NonNull contain null. The order of the
parameters match the order in which the fields appear in your class.

@AllArgsConstructorÂ generates a constructor with 1 parameter for each field in your class.
Fields marked withÂ @NonNullÂ result in null checks on those parameters

@NoArgsConstructor
@AllArgsConstructor
public class Employee {
	@Getter
	@Setter
	private String empId;
	@Setter(AccessLevel.PROTECTED)
	private String empName;

COMPANY NAME
Address | Phone | Link | Email

default watermark

Page 2
Footer Tagline

https://projectlombok.org/features/GetterSetter

	private Address address;
	.
	.
}

4. @Data annotation

@Data annotation is a replacement for @ToString, @EqualsAndHashCode, @Getter on all fields,
@Setter on all non-final fields, and @RequiredArgsConstructor.

@Data = @ToString +Â @EqualsAndHashCode +Â @Getter + @Setter
+ @RequiredArgsConstructor

@Data
public class Employee {
	@Getter
	@Setter
	private String empId;
	@Setter(AccessLevel.PROTECTED)
	private String empName;
	private Address address;
	.
	.
}

After you have added all your required annotations, If you want to see the methods that got generated
you can open the .class files after you build your application.

I hope you liked this post. If you have any questions or queries feel free to comments or write to us.

Category

1. Hands on
2. Lombok

Date Created
July 11, 2021
Author
kk-ravi144gmail-com

COMPANY NAME
Address | Phone | Link | Email

default watermark

Page 3
Footer Tagline

