
Pagination and Sorting using Spring Data JPA

Description

Introduction

In this post we are going to see the pagination and sorting feature provided by Spring data JPA and
how it will avoid problems and boost application performance.

Pagination in Spring Data JPA

Pagination is one of the important feature every developer should use wisely. Pagination is used to
represent the large dataset into smaller chunks. Paginating the database results is one of the best
ways to increase the performance of your JPA application. If Pagination is not used then it might slow
down the performance of your application drastically if the dataset is very large.

Consider if your application is retrieving 1 million records, imagine sending the data to UI and display
all the records at once. Application slowness would surely test your patience ðŸ˜‰. Lets see how to
implement Pagination in Spring Data JPA.

Pagination Example

BillionaireEntity class

This Entity class has all the attributes of the Billionaire’s.

@Entity
@Table(name="billionaire")
@Data
public class BillionaireEntity {

 @Id
 @GeneratedValue(strategy = GenerationType.IDENTITY)
 Integer id;
 @Column(name="first_name")
 String firstName;
 @Column(name="last_name")
 String lastName;
 @Column(name="company")
 String company;
 @Column(name="wealth")
 BigDecimal wealth;
}

COMPANY NAME
Address | Phone | Link | Email

default watermark

Page 1
Footer Tagline

Controller class

Note that we are accepting the pageSize and the pageNumber as a RequestParam from the
consumer of our service. The consumer is responsible to pass how many objects they want in
response and from which page number. Lets say there are total 20 records and user wants 5 records
at a time so there will be 4 pages and each page will contain 5 records each.

Note:- The pageNumber starts with a value of 0.

@RestController
@RequestMapping("/BillionaireApp/api")
public class BillionaireController {

 @Autowired
 BillionaireService billionaireService;

 @GetMapping("/billionaires")
 public List<BillionaireEntity> getAllBillionaire(
 @RequestParam("pageSize") Integer pageSize,
 @RequestParam("pageNumber") Integer pageNumber
) {
 return billionaireService.getAllBillionaire(pageNumber, pageSize);
 }
}

Service Class

Here we are constructing a PageRequest object which takes in the pageNumber and pageSize sent
by the consumer. This PageRequest object should be passed to the repository interface. i.e.
BillionaireRepository in our case.

@Service
public class BillionaireServiceImplv1 implements BillionaireService {

 @Autowired
 BillionaireRepository repository;

 @Override
 public List<BillionaireEntity> getAllBillionaire(Integer pageNumber, Integer pageSize) {
 Pageable pageRequest = PageRequest.of(pageNumber, pageSize);
 Page<BillionaireEntity> billionaires = repository.findAll(pageRequest);
 return billionaires.stream().toList();
 }
}

COMPANY NAME
Address | Phone | Link | Email

default watermark

Page 2
Footer Tagline

Repository

The repository should extend PagingAndSortingRepository for pagination to work. But here we are
extending BillionaireRepository with JpaRepository, so how will that work?

Well if you check the JpaRepository interface, it in turn extends PagingAndSortingRepository. This
is the reason why Pagination will work even though if you extend JpaRepository.

@Repository
public interface BillionaireRepository extends JpaRepository<BillionaireEntity, Integer> {
}

Sorting in Spring Data JPA

Sorting in Spring Data JPA can be implemented by passing an instance of Sort as a third parameter in
PageRequest object. If we want to get the sorted results based on a specific column say firstName
then we can use the sorting feature provided in Spring data JPA.

Sorting Example

The Sort parameter in PageRequest object as shown below.

 @Override
 public List<BillionaireEntity> getAllBillionaire(Integer pageNumber, Integer pageSize) {
 Pageable pageRequest = PageRequest.of(pageNumber, pageSize, Sort.by("firstName"));
 Page<BillionaireEntity> billionaires = repository.findAll(pageRequest);
 return billionaires.stream().toList();
 }

We can also get the results sorted in the Descending order in Spring Data JPA as shown below.

Pageable pageRequest = PageRequest.of(pageNumber, pageSize,
 Sort.by("firstName").descending());

Sorting the results using two columns or attributes is also possible using Spring Data JPA as shown
below.

Pageable pageRequest = PageRequest.of(pageNumber, pageSize,
 Sort.by("firstName").descending().and(Sort.by("lastName")));

COMPANY NAME
Address | Phone | Link | Email

default watermark

Page 3
Footer Tagline

After creating your Pageable instance you can pass it to the repository’s method.

Conclusion

I hope after reading the post you got the know the importance of Pagination and sorting the results and
 how it will help you to develop faster applications. I hope you enjoyed this article. Feel free to
comment or ask questions ðŸ˜Š Happy Learning.

Category

1. Hands on
2. Spring Boot

Date Created
May 2, 2023
Author
kk-ravi144gmail-com

COMPANY NAME
Address | Phone | Link | Email

default watermark

Page 4
Footer Tagline

