
Core Spring Interview Questions

Description

1) What is Loose Coupling?

Let’s say we have a class SortingService, inside the class we have created an instance of BubbleSort
Algorithm used to sort the list of employees

public class SortingSevice {
 	BubbleSort bubbleSort = new BubbleSort();
 bubbleSort(employeeList);
}

In future If we want to change the implementation from BubbleSort to QuickSort then we will have to
change the code in SortingService class. SortingService is tightly coupled with BubbleSort. Here we
only see a small change. But considering the nature of change, impact will be huge in case of larger
projects. Hence the above implementation is called tight coupling.

Below code is loosely coupled.

public interface SortAlgorithm {
 public List<Employee> sort(List<Employee> emps);
}

@Component
public class BubbleSort implements SortAlgorithm { //implementation here }

COMPANY NAME
Address | Phone | Link | Email

default watermark

Page 1
Footer Tagline

@Component
public class SortingService {

 @Autowired
 SortAlgorithm sortAlgorithm;

}

Since BubbleSort is implementing the SortAlgorithm, that will be injected inside SortingService and the
sort method will be called.

2) What is Dependency Injection?

The concept of Dependency injection in Spring is used to create loosely coupled applications by
injecting the dependencies when required.
For E.g. If a class A depends on class B to perform any operation, instead of creating an instance of
class B inside class A we should inject the instance of class B inside class A. There are two types of
dependency injection, setter injection & constructor injection

3) What is IOC (Inversion of Control)?

It means giving the control of creating and instantiating the spring beans to the Spring IOC container
and the only work the developer does is configuring the beans. IOC is a technique where you let
someone else create the object for you. And someone else in case of spring is an IOC container.

4) What is Auto Wiring?

We use @Autowired annotation in spring for auto wiring purposes. It is a way of telling the container to
give an instance on which it has been used.
E.g.

public class EmployeeController {
@Autowired
EmployeeService employeeService;

The above code states that EmployeeController needs an instance of EmployeeService class.

@Component
public class EmployeeService

Spring sees that EmployeeService is annotated with @Component, hence it will create an instance
and then inject inside EmployeeController class.
So autowiring is wiring the dependencies wherever required and this is automatically done by spring by
looking at the annotations.

COMPANY NAME
Address | Phone | Link | Email

default watermark

Page 2
Footer Tagline

5) What are the responsibilities of an IOC Container?

The responsibilities of the IOC container is to find the beans, identify the dependency and then wire
them and also manage the lifecycle of the beans.

public interface SortAlgorithm {
 public List<Integer> sort(List<Integer> emps);
}

@Component
BubbleSort implements SortAlgorithm { //implementation here }

@Component
public class SortingService {

 @Autowired
 SortAlgorithm sortAlgorithm;

}

The IOC container will create 2 beans i.e. SortingService & BubbleSort since we have annotated with
@Component. Before creating the bean of SortingService, IOC container sees that it has a
dependency on BubbleSort (Implementing SortAlgorithm). So Spring will autowire it and then create a
bean of SortingService.

6) What are BeanFactory and Applicationcontext?

Bean Factory and ApplicationContext are the two IOC containers. BeanFactory is the most basic
version of the IOC container & Application context an advanced version of Bean Factory. Application
context provides additional features such as WebApplicationContext that are used for web
applications, i18n and various other features.

7) How do you create an application context with Spring?

There are two ways to define the context. One using the XML or we can define using the annotation
@Configuration
Method 1 – XML approach

<?xml version = "1.0" encoding = "UTF-8"?>

<beans xmlns = "http://www.springframework.org/schema/beans"
 xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation = "http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd">

 <bean id = "helloIndia" class = "com.springtutorials.HelloIndia">

COMPANY NAME
Address | Phone | Link | Email

default watermark

Page 3
Footer Tagline

 <property name = "msg" value = "Hello India!"/>
 </bean>

</beans>

All the beans are defined in the above xml file.

ApplicationContext context = new ClassPathXmlApplicationContext(new String[] { MyApplicationContext.xml }

Above code snippet, it looks for all the xml files present in the classpath
Method 2 – Java approach

@Configuration
Class MyContext{
//your code here
}

ApplicationContext context = new AnnotationConfigApplicationContext(MyContext.class);

8) What is a Component Scan?

Spring will search for all the classes having @Component so that it can create a bean. Depending on
the project use case there can be a lot of packages a project can have. If Spring tries to search in all
the packages then it can be a big performance impact. So we can explicitly specify or help spring on
which packages to search for. In the below example we are telling spring to search for components
present in com.springtutorials package.

@Configuration
@ComponentScan(basePackages = {"com.springtutorials"})
class MyContext {
}

XML way of defining component scan is as below

COMPANY NAME
Address | Phone | Link | Email

default watermark

Page 4
Footer Tagline

<beans xmlns="http://www.springframework.org/schema/beans"
	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
	xmlns:context="http://www.springframework.org/schema/context"
	xsi:schemaLocation="http://www.springframework.org/schema/beans
	http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
	http://www.springframework.org/schema/context
	http://www.springframework.org/schema/context/spring-context-2.5.xsd">

	<context:component-scan base-package="com.springtutorials" />

</beans>

9) What do you mean by @Component and @Autowired?

Whichever class is annotated with @Component, a bean is created and managed by Spring. In the
below example 2 beans will be created i.e. BubbleSort and SortingService. Since SortAlogrithm is
present in SortingService and annotated with @Autowired, Spring will inject the dependency.

@Component
BubbleSort implements SortAlgorithm { //implementation here }

@Component
public class SortingService {

 @Autowired
 SortAlgorithm sortAlgorithm;

}

10. Whatâ€™s the difference between @Controller, @Component, @Repository,
and @Service Annotations in Spring?

Since we follow a layered architecture while developing any enterprise application, we add a specific
annotation to that specific layer.

@Controller – This annotation is most widely used in spring MVC pattern. This annotation is used on
a class which belongs to a controller layer & which is the starting point that gets the request.
@Service – Usually the controller layer will give a call to the service layer where the business logic is
written. @Service is used to annotate all the service or business layer classes.
@Repository – The layer that talks to the database or that is responsible to give us the expected data
is annotated with @Repository. Spring will automatically add the exception translation for JDBC
exceptions. Whenever a JDBC exception happens then it will be translated to a specific Spring
exception.
@Component – When we add this annotation to a class, a bean will be created and registered. This is
the most generic annotation.

COMPANY NAME
Address | Phone | Link | Email

default watermark

Page 5
Footer Tagline

11. What are different scopes of a bean?

Singleton – Only one instance per spring context will be created. When you create an application
context there is only one instance of that particular bean per container.
Prototype – New bean will be created whenever it is requested. To be more precise, in an application
context if 10 requests to that bean then 10 different instances will be created.
Request – This scope is applicable only in web application context. A new bean will be created on
every HTTP request. This scope is more suitable if we want to create beans as and when the user
performs that specific operation.
Session – This scope is applicable only in web application context. Only one bean will exist per HTTP
session. If some data is required across the session then this scope is more suitable. Example if a user
is logged in and we want to maintain the user data and share it till the session is alive then we can
make use of session scope.

12. What is the default scope of a bean?

The default scope of a bean is singleton scope.

13. Are Spring beans thread safe?

By default spring beans are not thread safe.

14. What are the different types of dependency injections?

There are two types of dependency injection. Setter and Constructor injection.

15. What is setter injection?

Setter injection is used for Optional dependencies.

@Component
public class EmployeeService {

	EmployeDao employeeDao;

	@Autowired
	public void setemployeeDao(EmployeDao employeeDao) {
		this.employeeDao = employeeDao;
	}
}

By using the @Autowired annotation on top of setemployeeDao method, we are telling spring to wire
the dependency i.e. employeeDao using setter injection.

COMPANY NAME
Address | Phone | Link | Email

default watermark

Page 6
Footer Tagline

16. What is constructor injection?

Constructor injection is used for Mandatory dependencies.

@Component
public class EmployeeService {

	EmployeDao employeeDao;

	@Autowired
	public EmployeeService(EmployeDao employeeDao) {
		super();
		this.employeeDao = employeeDao;
	}
}

By using the @Autowired annotation on top of EmployeeService constructor, we are telling spring to
wire the dependency i.e. employeeDao using constructor injection.

17. How does Spring do Autowiring?

There are 2 different ways Spring does the autowiring.

Autowiring byType

public interface SortAlgorithm {
 public List<Employee> sort(List<Employee> emps);
}

@Component
public class BubbleSort implements SortAlgorithm { //implementation here }

@Component
public class SortingService {

 @Autowired
 SortAlgorithm sortAlgorithm;
}

In the above example, SortAlgorithm is the interface and BubbleSort class is implementing the
SortAlgorithm interface. When Spring sees that SortingService class needs SortAlgorithm, it searches
for any implementations of SortAlgorithm interface i.e. any classes that are implementing
SortAlgorithm.
If SortAlgorithm would have been a class instead of interface, Spring would search for classes which
are of that specific type.
When spring sees that BubbleSort class is implementing SortAlgorithm, spring will autowire

COMPANY NAME
Address | Phone | Link | Email

default watermark

Page 7
Footer Tagline

BubbleSort inside SortingService.

Autowiring byName

public interface SortAlgorithm {
 public List<Employee> sort(List<Employee> emps);
}

@Component
public class BubbleSort implements SortAlgorithm { //implementation here }

@Component
public class InsertionSort implements SortAlgorithm { //implementation here }

@Component
public class SortingService {

 @Autowired
 SortAlgorithm bubbleSort;
}

In the above example 2 classes i.e. BubbleSort and InsertionSort are implementing SortAlgorithm. And
we are autowiring the SortAlgorithm interface inside the SortingService class. How will spring come to
know which implementing class to autowire?

@Autowired
SortAlgorithm bubbleSort;

If you look at the above line, we have given bubbleSort as the name and it matches with BubbleSort
class name and hence it injects BubbleSort class. This is called autowiring byName

18) What do you mean by NoSuchBeanDefinitionException and when do we get
this exception?

We get this exception when spring does not find the bean which it has to inject.

public interface SortAlgorithm {
 public List<Employee> sort(List<Employee> emps);
}

public class BubbleSort implements SortAlgorithm { //implementation here }

public class InsertionSort implements SortAlgorithm { //implementation here }

@Component
public class SortingService {

COMPANY NAME
Address | Phone | Link | Email

default watermark

Page 8
Footer Tagline

 @Autowired
 SortAlgorithm sortAlgorithm;
}

In the above example BubbleSort and InsertionSort classes are implementing the SortAlgorithm
interface, but the classes have not been annotated with @Component. Hence Spring will not be able to
find the class that it has to inject in the SortingService class where we have SortAlgorithm autowired.
Sometimes even after adding the @Component annotation, you will see the exception occurring. One
of the possible reasons can be you are component scanning the wrong package whereas the classes
you want to autowired must be present in a different package structure.

19) What do you mean by NoUniqueBeanDefinitionException & when do we get
this exception?

If Spring sees that it has to inject some dependency in a particular class but if the spring finds that
there are two beans, then it gets confused as to which bean to inject. In that case it throws a
NoUniqueBeanDefinitionException.

public interface SortAlgorithm {
 public List<Employee> sort(List<Employee> emps);
}

@Component
public class BubbleSort implements SortAlgorithm { //implementation here }

@Component
public class InsertionSort implements SortAlgorithm { //implementation here }

@Component
public class SortingService {

 @Autowired
 SortAlgorithm sortAlgorithm;
}

In the above example Spring has to autowire SortAlgorithm inside the SortingService class. But Spring
sees that two classes are implementing SortAlgorithm so it gets confused which one to autowire.

20) What is @Primary?

In the previous question we saw why we get NoUniqueBeanDefinitionException.
Method 1 – One way to solve the above exception is autowire byName. We can write below code in
SortingService.
Spring will autowire BubbleSort class.

COMPANY NAME
Address | Phone | Link | Email

default watermark

Page 9
Footer Tagline

@Autowired
SortAlgorithm bubbleSort;

Method 2 – Another way is to make use of @Primary.
Since two classes are implementing the same interface, and to make Spring aware which one to use
while injecting the dependency, we have to add one more annotation in one of the classes.

@Component
@Primary
public class BubbleSort implements SortAlgorithm { //implementation here }

21) What is @Qualifier?

In the previous question we saw two methods on how we can avoid
NoUniqueBeanDefinitionException. @Qualifier is the third way. We have to add this above the class
we want to inject and give it a name as below.

@Component
@Qualifier(â€œbubbleAlgoâ€•)
public class BubbleSort implements SortAlgorithm { //implementation here }

Also add the @Qualifier annotation along with the name which we used in the implementing class.

@Autowired
@Qualifier(â€œbubbleAlgoâ€•)
SortAlgorithm bubbleSort;

22) Different Spring versions and its features?

Spring 2.5 – From 2.5 onwards, Spring provided support for annotations. Before 2.5 we had to make
extensive use of XML.
Spring 4 – From version 4 onwards, Spring provided support for Java 8 features. Also introduced
@RestController annotation which is used in Spring REST.
Spring 5 – From version 5 onwards, Spring provided support for reactive programming, Functional
web framework & support for Kotlin.

23) What are important Spring Projects?

Apart from providing just dependency injection features, Spring has evolved very much. Spring has
various projects which we can make use of for various purposes. Below are some of the projects
Spring Data – Provides consistent data access.
Spring Batch – To develop batch applications.
Spring Security –

COMPANY NAME
Address | Phone | Link | Email

default watermark

Page 10
Footer Tagline

To secure the applications.
Spring Boot – To quickly build production ready applications.
Spring Cloud – To enable projects built in spring boot, we can use Spring cloud to cloud enable the
applications.
Spring REST – To develop REST web services.

Category

1. Interview

Date Created
March 15, 2021
Author
kk-ravi144gmail-com

COMPANY NAME
Address | Phone | Link | Email

default watermark

Page 11
Footer Tagline

