
Microservices Interview Questions

Description

1. What are Microservices

Microservices are small autonomous services that work together to achieve a business feature. Prior to
microservices most of the applications were monolithic in nature, meaning the entire team used to work
on a single and huge code base which was difficult to maintain.

Microservices ecosystem is a platform of services, and each service encapsulates a business
capability/domain. Business capability means whatever a particular business does in that domain to
fulfill its objectives and responsibilities. Microservices has its own independent life cycle. Developers
can build, test and release each microservice independently. We can have small autonomous teams
each responsible for one or multiple services. Contrary to general perception and â€˜microâ€™ in
microservices, the size of each service matters least and may vary depending on the operational
maturity of the organization. Read more here

2. What are advantages of Microservices architecture

Below are the advantages of microservices architecture.

1. Technology Heterogeneity – Number of microservices can vary from organization to
organization. A single technology may or may not solve all the problem efficiently. So teams have
freedom to use the technology of choice.

2. Resilience – Resilience means, if one component of the system fails, that failure does not
cascade, and hence we can isolate the problems and the rest of the system can carry on
working. In a monolithic service, if the service fails everything stops working, this can be avoided
if we run the service on multiple machines to reduce the chance of failure. Deploying the
application to multiple application servers or data centers.

3. Scalability – Scaling means increasing the number of instances of a microservice. This is
beneficial when a particular feature/microservice has the maximum traffic.

4. Ease of Deployment – With microservices, we can make a change to a single service and
deploy it independently without touching the rest of the services. This allows us to get our code

COMPANY NAME
Address | Phone | Link | Email

default watermark

Page 1
Footer Tagline

https://springmicroservices.com/what-are-micro-services/

deployed faster. By chance If any problem occurs, it can be isolated quickly to an individual
service, and rollback that application only.

For more extensive understanding Read more here

3. What are the disadvantages of Microservices architecture

1. Increased Operational Efforts – Due to more number of deployable microservice units, the
efforts required for running and managing microservices is more compared to monolithic
architecture. Appropriate monitoring is required as well as most of the operations must be
automated to manage the microservices architecture.

2. Difficult to change multiple microservices – When there is a new feature to be implemented,
and if it involves change in multiple microservices owned by multiple teams, the development and
deployments efforts must be coordinated properly for the feature to work.

3. Increased latency and failures – Since Microservices communicate through the network, the
latency can be higher sometimes or the communication between the services might fail.

4. What is loose coupling and high cohesion

Loose coupling and high cohesion are one of the core principles of microservices. Loose coupling
promotes designing your system in such a way that each component of the system can be testable
independently. The components are not tightly dependent with components in the system. If one
component wants to use the services of other their dependency have to be injected wherever they are
to be used.

High Cohesion means grouping related components in the system together. Lets take an example of
Email class. It contains properties such as To, From, CC, BCC, Subject, Body, and may contain
methods/features such as saveAsDraft(), send(), discardDraft(). But Login() feature should not be here,
since there are a number of email protocol, and should be implemented separately.

5. What is single responsibility principle

In a microservices architecture, the single responsibility principle requires each microservice
application to have just one focused responsibility.

6. What are client certificates

A client certificate is a digital certificate that enables a client system to perform authenticated requests,
by verifying the requesters identity. Client systems cannot send requests to remote servers without a
client certificate

7. What is service discovery in microservices

Service discovery is the process of calling the services by using the address provided by the Eureka
server. All the services in the ecosystem register themselves with the Eureka server. When service A
wants to call service B, it will get the address of any of the available instance from Eureka using the

COMPANY NAME
Address | Phone | Link | Email

default watermark

Page 2
Footer Tagline

https://springmicroservices.com/what-are-the-benefits-of-microservices-4-major-benefits/

service name registered i.e. A. Instead of hardcoding the dependent service direct URL in the
microservice, we delegate the job of getting the service URL to Eureka service.

8. What is domain driven design in microservices

Domain Driven Design, also known as DDD is a framework to design software models by taking
business domain models into consideration. Because rules, definitions, and protocols vary across
a large business domain model, domain-driven design suggests that we identify individual
bounded contexts within our domain, wherein rules, entities, and services are consistently applied.
Bounded contexts can interact with each other, but they are separated by their own respective domain
models that define their functionality.

9. What is consumer driven contract

Consumer driven contract, also known as CDC is a testing method which ensures the compatibility of
services based on requirements defined by the consumers. The contract refers to an agreement
between consumer and provider about the format of data transfer. CDC tests then are performed by
both consumer and provider to ensure the contract is continually honored. PACT is an open-source
tool that provides a CDC testing framework.

10. What is idempotence in microservices

Idempotence is when the services provides a consistent output in the case of duplicate messages.
Idempotence is critical in ensuring consistent behavior from services, with no unintended side effects in
the case that it receives duplicate requests.

11. Explain the working of microservice architecture

12. What is Spring Cloud

Spring Cloud provides tools for developers to quickly build some of the common patterns in distributed
systems (e.g. configuration management, service discovery, circuit breakers, intelligent routing, micro-
proxy, control bus, one-time tokens, global locks, leadership election, distributed sessions, cluster
state). Coordination of distributed systems leads to boiler plate patterns, and using Spring Cloud
developers can quickly stand up services and applications that implement those patterns. They will
work well in any distributed environment, including the developerâ€™s own laptop, bare metal data
centres, and managed platforms such as Cloud Foundry. Below are the features of Spring Cloud

Distributed/versioned configuration
Service registration and discovery
Routing
Service-to-service calls
Load balancing
Circuit Breakers
Global locks
Leadership election and cluster state

COMPANY NAME
Address | Phone | Link | Email

default watermark

Page 3
Footer Tagline

Distributed messaging

13. What is the difference between Spring Cloud and Spring Boot

Spring Boot

Using Spring boot we can develop standalone web applications, REST APIs and microservices
quickly.
It is an extension to Spring framework with added features like autoconfiguration, embedded
servers like Tomcat, Jetty etc.
Spring Boot addressed all the drawbacks of Spring framework.
There is no need to use XML configuration
The beans are initialized, configured and wired automatically.
It provides a module called as Actuators, which we can provide the metrics and health of the
application.

Spring Cloud

Spring Cloud provides service discovery and registration, which allows itself to register into
eureka server. and also lookup other registered services to access its features.
It enables to maintain a centralized configuration server which contains the application
configuration.
It provides a dependency called as resilience4j , which enables our application to implement
circuit breaker pattern.
It provides load balancing features to efficiently use the available application instances.
Spring Cloud Gateway is the API gateway designed for the Spring boot application.
Spring Cloud Stream is another framework in Spring Cloud for building highly scalable event-
driven microservices connected with shared messaging systems. This is used for stream
processing

14. What is bounded context in domain driven design

Bounded contexts divide a system by domains. They do not have to be microservices. They can also
be implemented as modules in a deployment monolith. If the bounded contexts are implemented as
microservices, this results in modules that are independent at the domain and technical level.
Therefore, it is sensible to combine the concepts of microservices and bounded contexts.

15. How do microservices communicate with each other?

We can use synchronous as well as asynchronous way of communication between microservices
depending on the use case. REST HTTP, Grpc (Google remote procedure call) , WebClient can be
used for synchronous communication and Kafka can be used for synchronous or asynchronous
communication.

16. What is semantic monitoring in microservices architecture

COMPANY NAME
Address | Phone | Link | Email

default watermark

Page 4
Footer Tagline

Semantic monitoring in microservices architecture is a process of running automated tests in
production environment frequently to check for performance issues, or to find any bug which impacts
the overall business function. Semantic monitoring is done by either running automated tests or
monitoring the application

17. What do you mean by distributed transaction

18. What is Eureka in microservice

19. How to implement service discovery in microservices

20. What are containers in microservices

Containers as the name suggests that it contains all the necessary dependencies and configurations
required for a microservice to function, instead of depending on the server for its dependencies. Docker
is one of the most popular way used to containerize a microservice.

21. What is circuit breaker pattern in microservices

When a particular microservice is calling another microservice which is down or facing outage, then it
will return 500 internal server error. If the user is continuously calling the failed service then the
resources are only getting wasted. Sometimes your service might be a victim of Denial of service
(DoS) attack, where someone is calling bombarding your service purposefully so that it gets to a point
where the service is out of memory and resources. This will cause your application to go down
temporarily. Circuit breaker pattern can come to rescue if you implement it in your application. In order
to prevent infinite calls to an application, we can restrict the number of calls by defining a request count
per duration. For example, If the number call to a microservice reaches a threshold of 10 requests per
minute (be it success or failure), then prevent the additional call for that time duration.

In order to implement this there are 3 states of an application.

CLOSED – Closed state means circuit is closed and we are able to invoke the application
successfully.
OPEN – Open state means there is not live connectivity to the application and your call will not
reach the application.
HALF OPEN – If your application has been down for a while, the circuit will be in OPEN state. To
test if the application has recovered from failure and if it is functioning properly, the circuit will be
bought in HALF OPEN state to test the calls.

22. What is resilience4j in spring microservices

COMPANY NAME
Address | Phone | Link | Email

default watermark

Page 5
Footer Tagline

https://springmicroservices.com/what-are-containers/
https://springmicroservices.com/what-is-docker/

Resilience4j is an alternative to Hystrix which helps us to manage fault tolerance in microservice.
Hystrix has been deprecated by the Spring. Since large part of the Spring community had implemented
Hystrix in their application, the Spring team introduced Resilience4j. Apart from fault tolerance it offer
much more features as listed below.

Rate Limiter – Used to block too many frequent requests.
Time Limiter – Set a time limit when calling remote operation.
Retry mechanism – Automatically retry a failed remote operation.
Bulkhead – Avoid too many concurrent request.
Cache – To store results of remote operation which are costly.

Category

1. Interview

Date Created
March 15, 2021
Author
kk-ravi144gmail-com

COMPANY NAME
Address | Phone | Link | Email

default watermark

Page 6
Footer Tagline

