
Spring Boot Interview Questions

Description

What is Spring Boot?
Spring Boot aims to help the developers reduce the development time by mostly focusing their time on
writing business logic. Spring Boot contains predefined set of dependencies which focus on reducing
the time for application configuration. Spring Boot reduces the boiler plate code. Autoconfiguration is
one of the feature which makes the developers life easier as Spring boot configures the classes by
looking at the dependencies present.

Difference between Spring and Spring Boot

Spring Spring Boot

Spring framework was released in 2002 and
the main feature was dependency injection.

Spring framework has a lot of modules and
Spring Boot is one of the modules which
simplifies creating Spring based
applications.

Difficult for developers to create applications,
as a lot of configurations are required.

Spring Boot was designed to create an
easy to start Spring application which you
can go till Production with minimal
configuration.

Development time required is more.
It reduces lots of development time and
increases productivity

There is no embedded server, we need to add
it manually to the IDE

It provides Embedded HTTP servers like
Tomcat, Jetty etc. to develop and test our
web applications very easily.

COMPANY NAME
Address | Phone | Link | Email

default watermark

Page 1
Footer Tagline

Spring Spring Boot
Extra care needed while adding dependencyin
pom.xml. We might end up adding another
dependency with a version that might not be
compatible with other dependencies. In short
transitive dependency.

Spring Boot has starter projects or entries
in pom.xml which will take care of
downloading all the required dependencies
and we don’t need to worry on theversions
that are downloaded.

Does not provide any in memory database.
Provides H2 which is the in memory
database.

Framework used to create Enterprise
applications.

Most widely used to create REST web
services and Cloud micro services.

Features of Spring Boot
Create stand-alone Spring applications
Provides Embedded servers such as Tomcat, Jetty or Undertow directly (no need to deploy WAR
files)
Provide opinionated ‘starter’ dependencies to simplify your build configuration
Automatically configure Spring and 3rd party libraries whenever possible
Provide production-ready features such as metrics, health checks, and externalized configuration.
Absolutely no code generation and no requirement for XML configuration.
Spring Boot starter projects used for dependency management.
Integrates well with other Spring projects such as Spring Data, Spring Security, Spring Batch,
Spring Credhub etc.
Spring Initializer is a web tool which is used to create Spring Boot applications, all you have to do
is select the spring boot version, fill the details like group name, artifact etc, select the
dependencies presented to you, download the project and you are ready to go.

What are the different ways of creating Spring
Boot Applications?

Spring Boot CLI
Spring Starter Project Wizard using STS IDE
Spring Initializr
Spring Maven Project

What is Spring Initializr?
Spring Initializr is an online portal provided by Official Spring to generate Spring Boot projects based
on the details provided. Based on the dependencies we provide, it creates a that is available for
download, and post that we can import in our IDE.

COMPANY NAME
Address | Phone | Link | Email

default watermark

Page 2
Footer Tagline

https://start.spring.io/

What is Externalization in Spring Boot
Externalization in Spring Boot is provided using below factors.
Application property files : Whatever configurations the application would need, are placed in either
application.properties file or in YAML files. The extension of YAML files is application.yml. Both have
their own style of expressing the configuration. Property files are placed in either current directory,
classpath root or config directory from where the properties could be loaded.

Profile property files : Now that we know configurations are placed in either application.properties or
application.yml files. We can now define properties specific to the environment in which your
application is deployed. Example if your application is deployed in a DEV environment or UAT
environment, the properties will be picked up based on the profile that we will set to our files. Example
application-uat.yml , this file has UAT as the profile set and will be used by the application running on
UAT environment.

Command-line properties : Whatever arguments we provide in the command line it will be added as
properties and it will be added as environment properties.

What are Spring Boot Starter Projects
Once we add Spring boot starter dependencies, all the associated jars will be downloaded.
E.g. In case of starter-web dependency, all the required jars will be downloaded so that we can start
building RESTful web services or Spring MVC based applications.

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
 <version>2.3.0.RELEASE</version>
</dependency>

spring-boot-starter-data-jpa â€“ Spring Data JPA with Hibernate
spring-boot-starter-security â€“ Used for Spring Security
spring-boot-starter-aop: This starter is used for aspect-oriented programming with AspectJ and
Spring AOP
spring-boot-starter-test: Is the starter for testing Spring Boot applications

Explanation of Spring Boot actuators
Spring boot actuators are used to check the metrics and various other aspects of a running production
application. There are various endpoints by which we can get all the information.

COMPANY NAME
Address | Phone | Link | Email

default watermark

Page 3
Footer Tagline

Some of the features include.

Beans – Displays a complete list of all the Spring beans in your application.
Health – Shows application health information.
Info – Displays arbitrary application info.
Metrics – Shows â€˜metricsâ€™ information for the current application

Explanation of Spring Boot devtools
Spring Boot includes a set of tools that can make the application development experience a little more
pleasant and faster.

<dependencies>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-devtools</artifactId>
 <optional>true</optional>
 </dependency>
</dependencies>

Applications that use spring-boot-devtools automatically restart whenever files on the classpath
change. This can be a useful feature when working in an IDE, as it gives a very fast feedback loop for
code changes. By default, any entry on the classpath that points to a directory is monitored for
changes. Note that certain resources, such as static assets and view templates, do not need to restart
the application.

What is auto configuration in Spring boot
Enable auto-configuration of the Spring Application Context, attempts to guess and configure beans
that you are likely needed. Auto-configuration classes are usually applied based on your classpath and
what beans you have defined. For example, if you have tomcat-embedded.jar on your classpath you
are likely to want a TomcatServletWebServerFactory (unless you have defined your own
ServletWebServerFactory bean).
When using @SpringBootApplication, the auto-configuration of the context is automatically enabled
and adding this annotation has therefore no additional effect.

Auto-configuration tries to be as intelligent as possible and will back-away as you define more of your
own configuration.

COMPANY NAME
Address | Phone | Link | Email

default watermark

Page 4
Footer Tagline

Spring Boot auto-configuration attempts to automatically configure your Spring application based onthe
jar dependencies that you have added. For example, if HSQLDB is on your classpath, and youhave
not manually configured any database connection beans, then Spring Boot auto-configures an in-
memory database.

@SpringBootApplication annotation
@SpringBootApplication = @Configuration + @ComponentScan + @EnableAutoConfiguration

Most of you might have seen this annotation in the Spring boot projects main class. This Single
annotation serves 3 purposes.

@Configuration– The Class that has this annotation is the source of beans. This annotation is used
for defining beans using Java configuration.

@ComponentScan – Spring container scans through all the packages and registers the beans in the
Spring Application Context

@EnableAutoConfiguration – This is one of the intelligent features of Spring boot and tries to
configure beans that you are likely needed looking at the jars present in the Classpath .

What is the purpose ofÂ @RestController
Â annotation in Spring Boot?
The @RestController annotation is a combination of two annotations i.e. @Controller and
@ResponseBody annotation. This annotation eliminates the need to annotate methods that map
requests with the @ResponseBody annotation thereby making the code cleaner. The @ResponseBody
 annotation serializes the return object into HttpResponse.

What is the purpose of
@ConditionalOnMissingBeanÂ annotation?
This annotation is used along with @Bean annotation. @ConditionalOnMissingBean is a way to tells
the auto configuration class to initialize the bean only when it is not able to find the bean in application
context. If the bean already exists then it will not get created.

@ConditionalOnMissingBean
@Bean
publicÂ DiscountÂ myDiscount()Â {Â Â Â Â
returnÂ newÂ Discount();

COMPANY NAME
Address | Phone | Link | Email

default watermark

Page 5
Footer Tagline

}

myDiscount will be initialized only when no other bean of type myDiscount exists in the context. If it
does, then myDiscount will not be registered as a bean.

The main purpose of this annotation is to provide a fallback bean, in case no bean of that type is
present.

How to change tomcat server to jetty in Spring
Boot
Tomcat is the default server that comes with spring-boot-starter-web dependency. In order to change
the default server from Tomcat to Jetty, we need to exclude the Tomcat dependency and Jetty
dependency.

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
 <exclusions>
 <exclusion>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-tomcat</artifactId>
 </exclusion>
 </exclusions>
</dependency>

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-jetty</artifactId>
</dependency>

How to change default port of embedded
tomcat server in Spring Boot
The server.port property in the application.properties file is used to assign a different port to
Tomcat server.

server.port = 8181

How to disable default web server in Spring

COMPANY NAME
Address | Phone | Link | Email

default watermark

Page 6
Footer Tagline

Boot
The spring.main.web-application-type=none property in the application.properties file is
used to disable the default web server and change the web application type.

What is Spring Boot starter parent (spring-boot-
starter-parent dependency)?
spring-boot-starter-parent contains the default settings like default java version, default encoding as
well as default plugin configuration like maven-jar-plugin, maven-failsafe-plugin etc. It also contains the
working combination of dependencies and their version numbers. Everything present in the parent
plugin is inherited by the child pom. Below is how the starter parent dependency looks like

<parent>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-parent</artifactId>
 <version>2.4.0.RELEASE</version>
</parent>

Difference between yaml and properties files
Both yaml and properties files are used to store properties or configurations that can be accessed from
your spring boot application. If you are using properties file in your application then the file name can
be application.properties, but if you are using yaml files to store configuration then it will be
application.yml. Yaml is considered more user friendly as far as readability is concerned. To
understand this more, let’s take an example of creating database configuration using both properties
and yaml files.

application.properties

spring.datasource.url=jdbc:h2:mem:testdb
spring.datasource.driverClassName=org.h2.Driver
spring.datasource.username=sa
spring.datasource.password=password

application.yml

spring:
 datasource:
 url: jdbc:h2:mem:testdb

COMPANY NAME
Address | Phone | Link | Email

default watermark

Page 7
Footer Tagline

 driverClassName: org.h2.Driver
 username: sa
 password: password

We can also validate the yaml file using some online validator.

Explain about @ConfigurationProperties
@ConfigurationProperties is used to read data from the properties file.

This annotation is used to read configurations from the properties file and map it to Java bean. Along
with this annotation we use @Configuration.

application.properties

spring.datasource.url=jdbc:h2:mem:testdb
spring.datasource.driverClassName=org.h2.Driver
spring.datasource.username=sa
spring.datasource.password=password

@Configuration
@ConfigurationProperties(prefix = "spring.datasource")
public class ConfigProperties {

 private String url;
 private String driverClassName;
 private String username;
 private String password;;

 // standard getters and setters
}

Profiles in Spring boot
Profiles in spring boot are used to differentiate between the configurations specific to a particular
environment. E.g. If your application is running in a Development environment for development
purpose, and Production environment for the real users, the database connectivity for both
environments will be different.
If we store dev specific configuration in application-dev.yml and production specific configuration in
application-prod.yml , based on the environment which your application is running in, it will pick the
configurations from that specific file. Here â€œdevâ€• and â€œprodâ€• are the profiles. Profiles are set
in the environment variables, so while the application startup, it will read the configuration based on the
profile.

COMPANY NAME
Address | Phone | Link | Email

default watermark

Page 8
Footer Tagline

Embedded tomcat in Spring boot
Remember the days when we used to download the Apache tomcat and set it up on our IDE? It’s no
more the case now. Whenever you create a Spring boot application, it comes with an embedded
tomcat along with it and this provides convenience to the developers. The servlet container config has
a separate configuration, but now its part of the application config.

Various annotations in Spring boot
Core Spring annotations
@Required
@Autowired
@Configuration
@ComponentScan
@Bean
@Component
@Controller
@Repository

Spring boot annotations
@SpringBootApplication
@EnableAutoConfiguration
@Configuration

Spring REST annotations
@RestController
@GetMapping
@PostMapping
@PutMapping
@DeleteMapping
@PathVariable
@RequestParam
@RequestHeader
@RequestBody

Category

1. Interview

Date Created
March 15, 2021
Author
kk-ravi144gmail-com

COMPANY NAME
Address | Phone | Link | Email

default watermark

Page 9
Footer Tagline

